

Welcome to TagScript’s documentation!

Note

Check out User Guides if first!

Welcome to bTagScript’s official documentation.

Note

This documentation is still being regularily updated! Best to check back later if you can’t find something you need.

Blocks

All Block

	
class bTagScript.block.AllBlock

	Bases: VerbRequiredBlock

The all block checks that all of the passed expressions are true.
Multiple expressions can be passed to the parameter by splitting them with |.

The payload is a required message that must be split by |.
If the expression evaluates true, then the message before the | is returned, else the message after is returned.

Usage: {all(<expression|expression|...>):<message>}

Aliases: and

Payload: message

Parameter: expression

Examples:

{all({args}>=100|{args}<=1000):You picked {args}.|You must provide a number between 100 and 1000.}
if {args} is 52
You must provide a number between 100 and 1000.

if {args} is 282
You picked 282.

Any Block

	
class bTagScript.block.AnyBlock

	Bases: VerbRequiredBlock

The any block checks that any of the passed expressions are true.
Multiple expressions can be passed to the parameter by splitting them with |.

The payload is a required message that must be split by |.
If the expression evaluates true, then the message before the | is returned, else the message after is returned.

Usage: {any(<expression|expression|...>):<message>}

Aliases: or

Payload: message

Parameter: expression

Examples:

{any(hi=={args}|hello=={args}|heyy=={args}):Hello {user}!|How rude.}
If {args} is hi
Hello _Leg3ndary#0001!

If {args} is what's up!
How rude.

Assignment Block

Blacklist Block

	
class bTagScript.block.BlacklistBlock

	Bases: VerbRequiredBlock

The blacklist block will attempt to convert the given parameter into a channel
or role, using name or ID. If the user running the tag is in the targeted
channel or has the targeted role, the tag will stop processing and
it will send the response if one is given. Multiple role or channel
requirements can be given, and should be split by a “,”.

Usage: {blacklist(<role,channel>):[response]}

Payload: response

Parameter: role, channel

Examples:

{blacklist(Muted)}
{blacklist(#support):This tag is not allowed in #support.}
{blacklist(Tag Blacklist, 668713062186090506):You are blacklisted from using tags.}

Break Block

	
class bTagScript.block.BreakBlock

	Bases: Block

The break block will force the tag output to only be the payload of this block, if the passed
expresssion evaluates true.
If no message is provided to the payload, the tag output will be empty.

This differs from the StopBlock as the stop block stops all tagscript processing and returns
its message while the break block continues to process blocks. If command blocks exist after
the break block, they will still execute.

Usage: {break(<expression>):[message]}

Aliases: short, shortcircuit

Payload: message

Parameter: expression

Examples:

{break(=={args}):You did not provide any input.}

Command Block

	
class bTagScript.block.CommandBlock(limit: int [https://docs.python.org/3/library/functions.html#int] = 3)

	Bases: VerbRequiredBlock

Run a command as if the tag invoker had ran it. Only 3 command
blocks can be used in a tag.

Usage: {command:<command>}

Aliases: c, com, command

Payload: command

Parameter: None

Examples:

{c:ping}
Invokes ping command

{c:ban {target(id)} Chatflood/spam}
Invokes ban command on the pinged user with the reason as "Chatflood/spam"

Cooldown Block

	
class bTagScript.block.CooldownBlock

	Bases: VerbRequiredBlock

The cooldown block implements cooldowns when running a tag.
The parameter requires 2 values to be passed: rate and per integers.
The rate is the number of times the tag can be used every per seconds.

The payload requires a key value, which is the key used to store the cooldown.
A key should be any string that is unique. If a channel’s ID is passed as a key,
the tag’s cooldown will be enforced on that channel. Running the tag in a separate channel
would have a different cooldown with the same rate and per values.

The payload also has an optional message value, which is the message to be sent when the
cooldown is exceeded. If no message is passed, the default message will be sent instead.
The cooldown message supports 2 blocks: key and retry_after.

Usage: {cooldown(<rate>|<per>):<key>|[message]}

Payload: key, message

Parameter: rate, per

Examples:

{cooldown(1|10):{author(id)}}
the tag author used the tag more than once in 10 seconds
The bucket for 741074175875088424 has reached its cooldown. Retry in 3.25 seconds."

{cooldown(3|3):{channel(id)}|Slow down! This tag can only be used 3 times per 3 seconds per channel. Try again in **{retry_after}** seconds."}
the tag was used more than 3 times in 3 seconds in a channel
Slow down! This tag can only be used 3 times per 3 seconds per channel. Try again in **0.74** seconds.

Embed Block

	
class bTagScript.block.EmbedBlock

	Bases: Block

An embed block will send an embed in the tag response.
There are two ways to use the embed block, either by using properly
formatted embed JSON from an embed generator or manually inputting
the accepted embed attributes.

JSON

Using JSON to create an embed offers complete embed customization.
Multiple embed generators are available online to visualize and generate
embed JSON.

Usage: {embed(<json>)}

Payload: None

Parameter: json

{embed({"title":"Hello!", "description":"This is a test embed."})}
{embed({
 "title":"Here's a random duck!",
 "image":{"url":"https://random-d.uk/api/randomimg"},
 "color":15194415
})}

Manual

The following embed attributes can be set manually:

	title

	description

	color

	url

	thumbnail

	image

	field - (See below)

Adding a field to an embed requires the payload to be split by |, into
either 2 or 3 parts. The first part is the name of the field, the second is
the text of the field, and the third optionally specifies whether the field
should be inline.

Usage: {embed(<attribute>):<value>}

Payload: value

Parameter: attribute

{embed(color):#37b2cb}
{embed(title):Rules}
{embed(description):Follow these rules to ensure a good experience in our server!}
{embed(field):Rule 1|Respect everyone you speak to.|false}

Both methods can be combined to create an embed in a tag.
The following tagscript uses JSON to create an embed with fields and later
set the embed title.

:: tagscript:

{embed({{"fields":[{"name":"Field 1","value":"field description","inline":false}]})}
{embed(title):my embed title}

If Block

	
class bTagScript.block.IfBlock

	Bases: VerbRequiredBlock

The if block returns a message based on the passed expression to the parameter.
An expression is represented by two values compared with an operator.

The payload is a required message that must be split by |.
If the expression evaluates true, then the message before the | is returned, else the message after is returned.

Expression Operators:

	Operator

	Check

	Example

	Description

	==

	equality

	a==a

	value 1 is equal to value 2

	!=

	inequality

	a!=b

	value 1 is not equal to value 2

	>

	greater than

	5>3

	value 1 is greater than value 2

	<

	less than

	4<8

	value 1 is less than value 2

	>=

	greater than or equality

	10>=10

	value 1 is greater than or equal to value 2

	<=

	less than or equality

	5<=6

	value 1 is less than or equal to value 2

Usage: {if(<expression>):<message>]}

Payload: message

Parameter: expression

Examples:

{if(63=={args}):You guessed it! The number I was thinking of was 63!|Too {if({args}<63):low|high}, try again.}
If args is 63
You guessed it! The number I was thinking of was 63!

If args is 73
Too low, try again.

If args is 14
Too high, try again.

Loose Variable Block

	
class bTagScript.block.LooseVariableGetterBlock

	Bases: Block

The loose variable block represents the adapters for any seeded or defined variables.
This variable implementation is considered “loose” since it checks whether the variable is
valid during process(), rather than will_accept().
You may also define variables here with {$<variable name>:<value>}

Usage: {<variable_name>([parameter]):[payload]}

Aliases: This block is valid for any inputted declaration.

Payload: Depends on the variable’s underlying adapter.

Parameter: Depends on the variable’s underlying adapter.

Examples:

{=(example):This is my variable.}
{example}
This is my variable.

{$variablename:This is another variable.}
{variablename}
This is another variable.

Math Block

	
class bTagScript.block.MathBlock

	Bases: Block

A math block is a block that contains a math expression.
Will write out everything later bleh

Usage: {math:<expression>}

Aliases: math, m, +, calc

Payload: expression

Parameter: None

Examples:

{m:2+3}
5.0

{math:7(2+3)}
42.0

{math:trunc(7(2+3))}
42

Override Block

	
class bTagScript.block.OverrideBlock

	Bases: Block

Override a command’s permission requirements. This can override
mod, admin, or general user permission requirements when running commands
with the Command Block. Passing no parameter will default to overriding
all permissions.

In order to add a tag with the override block, the tag author must have Manage
Server permissions.

This will not override bot owner commands or command checks.

Usage: {override(["admin"|"mod"|"permissions"]):[command]}

Aliases: bypass

Payload: command

Parameter: "admin", "mod", "permissions"

Examples:

{override}
overrides all commands and permissions

{override(admin)}
overrides commands that require the admin role

{bypass(permissions)}
{bypass(mod)}
overrides commands that require the mod role or have user permission requirements

Random Block

	
class bTagScript.block.RandomBlock

	Bases: VerbRequiredBlock

Pick a random item from a list of strings, split by either ~
or ,. An optional seed can be provided to the parameter to
always choose the same item when using that seed.
You can weight options differently by adding a weight and | before
the item.

Usage: {random([seed]):<list>}

Aliases: #, rand

Payload: list

Parameter: seed

Examples:

{random:Carl,Harold,Josh} attempts to pick the lock!
Possible Outputs:
Josh attempts to pick the lock!
Carl attempts to pick the lock!
Harold attempts to pick the lock!

{=(insults):You're so ugly that you went to the salon and it took 3 hours just to get an estimate.~I'll never forget the first time we met, although I'll keep trying.~You look like a before picture.}
{=(insult):{#:{insults}}}
{insult}
Assigns a random insult to the insult variable

{#:5|Cool,3|Lame}
5 to 3 chances of being cool vs lame

Range Block

	
class bTagScript.block.RangeBlock

	Bases: VerbRequiredBlock

The range block picks a random number from a range of numbers seperated by -.
The number range is inclusive, so it can pick the starting/ending number as well.
Using the rangef block will pick a number to the tenth decimal place.

An optional seed can be provided to the parameter to always choose the same item when using that seed.

Usage: {range([seed]):<lowest-highest>}

Aliases: rangef

Payload: number

Parameter: seed

Examples:

Your lucky number is {range:10-30}!
Your lucky number is 14!
Your lucky number is 25!

{=(height):{rangef:5-7}}
I am guessing your height is {height}ft.
I am guessing your height is 5.3ft.

Redirect Block

	
class bTagScript.block.RedirectBlock

	Bases: VerbRequiredBlock

Redirects the tag response to either the given channel, the author’s DMs,
or uses a reply based on what is passed to the parameter.

Usage: {redirect(<"dm"|"reply"|channel>)}

Payload: None

Parameter: "dm", "reply", "channel"

Examples:

{redirect(dm)}
{redirect(reply)}
{redirect(#general)}
{redirect(626861902521434160)}

Replace Block

	
class bTagScript.block.ReplaceBlock

	Bases: VerbRequiredBlock

The replace block will replace specific characters in a string.
The parameter should split by a ,, containing the characters to find
before the command and the replacements after.

Usage: {replace(<original,new>):<message>}

Aliases: sub

Payload: message

Parameter: original, new

{replace(o,i):welcome to the server}
welcime ti the server

{replace(1,6):{args}}
if {args} is 1637812
6637862

{replace(,):Test}
T e s t

Require Block

	
class bTagScript.block.RequireBlock

	Bases: VerbRequiredBlock

The require block will attempt to convert the given parameter into a channel
role or member, using name or ID. If the user running the tag is not in the
targeted channel or doesn’t have the targeted role, the tag will stop processing
and it will send the response if one is given. Multiple role or channel
requirements can be given, and should be split by a “,”.

Usage: {require(<role, channel, member>):[response]}

Aliases: whitelist

Payload: response

Parameter: role, channel, member

Examples:

{require(Moderator)}
{require(#general, #bot-cmds):This tag can only be run in #general and #bot-cmds.}
{require(757425366209134764, 668713062186090506, 737961895356792882):You aren't allowed to use this tag.}

ShortCutRedirect Block

STRF Block

	
class bTagScript.block.StrfBlock

	Bases: Block

The strf block converts and formats timestamps based on strftime formatting spec [https://strftime.org/].
Two types of timestamps are supported: ISO and epoch.
If a timestamp isn’t passed, the current UTC time is used.

Invoking this block with Unix Specific Services [https://docs.python.org/3/library/unix.html#unix] will return the current Unix timestamp.

Usage: {strf([timestamp]):<format>}

Aliases: unix

Payload: format

Parameter: timestamp

Example:

{strf:%Y-%m-%d}
2021-07-11

{strf({user(timestamp)}):%c}
Fri Jun 29 21:10:28 2018

{strf(1420070400):%A %d, %B %Y}
Thursday 01, January 2015

{strf(2019-10-09T01:45:00.805000):%H:%M %d-%B-%Y}
01:45 09-October-2019

{unix}
1629182008

Strict Variable Block

	
class bTagScript.block.StrictVariableGetterBlock

	Bases: Block

The strict variable block represents the adapters for any seeded or defined variables.
This variable implementation is considered “strict” since it checks whether the variable is
valid during will_accept() and is only processed if the declaration refers to a valid
variable.

Usage: {<variable_name>([parameter]):[payload]}

Aliases: This block is valid for any variable name in Response.variables.

Payload: Depends on the variable’s underlying adapter.

Parameter: Depends on the variable’s underlying adapter.

Examples:

{=(example):This is my variable.}
{example}
This is my variable.

URL Encode Block

	
class bTagScript.block.URLEncodeBlock

	Bases: VerbRequiredBlock

This block will encode a given string into a properly formatted url
with non-url compliant characters replaced. Using + as the parameter
will replace spaces with + rather than %20.

Usage: {urlencode(["+"]):<string>}

Payload: string

Parameter: “+”, None

Example:

{urlencode:covid-19 sucks}
covid-19%20sucks

{urlencode(+):im stuck at home writing docs}
im+stuck+at+home+writing+docs

You can use this to search up blocks
Eg if {args} is command block

<https://btagscript.readthedocs.io/en/latest/search.html?q={urlencode(+):{args}}&check_keywords=yes&area=default>
<https://btagscript.readthedocs.io/en/latest/search.html?q=command+block&check_keywords=yes&area=default>

URL Decode Block

	
class bTagScript.block.URLDecodeBlock

	Bases: VerbRequiredBlock

This block will decode a given url into a string
with non-url compliant characters replaced. Using + as the parameter
will replace spaces with + rather than %20.

Usage: {urldecode(["+"]):<string>}

Payload: string

Parameter: “+”, None

Examples:

{urldecode:covid-19%20sucks}
covid-19 sucks

{urldecode(+):im+stuck+at+home+writing+docs}
im stuck at home writing docs

This block is just the reverse of the urlencode block

Length Block

	
class bTagScript.block.LengthBlock

	Bases: VerbRequiredBlock

The length block will check the length of the given String.
If a parameter is passed in, the block will check the length
based on what you passed in, w for word, s for spaces.
If you provide an invalid parameter, the block will return -1.

Usage: {length(["w", "s"]):<text>}

Aliases: len

Payload: text

Parameter: "w", "s"

{length:TagScript}
9

{len(w):Tag Script}
2

{len(s):Hello World, Tag, Script}
3

{len(space):Hello World, Tag, Script}
-1

Count Block

	
class bTagScript.block.CountBlock

	Bases: VerbRequiredBlock

The count block will count how much of text is in message.
This is case sensitive and will include substrings, if you
don’t provide a parameter, it will count the spaces in the
message.

Usage: {count([text]):<message>}

Aliases: None

Payload: message

Parameter: text

{count(Tag):TagScript}
1

{count(Tag):Tag Script TagScript}
2

{count(t):Hello World, Tag, Script}
1 as there's only one lowercase t in the entire string

Comment Block

	
class bTagScript.block.CommentBlock

	Bases: Block

The comment block is literally just for comments, it will not be
parsed, however it will be removed from your codes output.

Usage: {comment([other]):[text]}

Aliases: /, Comment, comment, //

Payload: text

Parameter: other

{//:Comment!}

{Comment(Something):Comment!}

OrdinalAbbreviation Block

	
class bTagScript.block.OrdinalAbbreviationBlock

	Bases: Block

The ordinalabbreviation block returns the ordinal abbreviation of a number.
If a parameter is provided, it must be, one of, c, comma, indicator, i
Comma being adding commas every 3 digits, indicator, meaning the ordinal indicator.
(The st of 1st, nd of 2nd, etc.)

The number may be positive or negative, if the payload is invalid, -1 is returned.

Usage: {ord(["c", "comma", "i", "indicator"]):<number>}

Aliases: None

Payload: number

Parameter: "c", "comma", "i", "indicator"

{ord:1000}
1,000th

{ord(c):1213123}
1,213,123

{ord(i):2022}
2022nd

Debug Block

	
class bTagScript.block.DebugBlock

	Bases: Block

The debug block allows you to debug your tagscript quickly and easily,
it will save the output to the debug_var key in the response dict.
Separate the variables you want to include or exclude with a comma or
a tilde.

If no parameters are provided in addition to no payload, all variables
will be included. If no parameters are provided and a payload is
provided, it will assume you want to include those variables.

Usage: {debug(["i", "include", "e", "exclude"]):<variables>}

Aliases: None

Payload: variables

Parameter: "i", "include", "e", "exclude"

Note

{debug} is the same as {debug(exclude):}

{debug:somevar~anothervar} is the same as {debug(include):somevar~anothervar}

Examples:

Note

THIS SHOULD ALWAYS BE PLACED AT THE VERY BOTTOM, IT WILL NOT RETURN ANYTHING UNDER IT.

Assuming we have the following tagscript, we first set the var something, then set
parsed (using the dollar sign method), to Hello|World, (assume we actually wanted just the Hello
but we forgot)

{=(something):Hello/World}
{$parsed:{something(1)}}
{if({parsed}==Hello):Hello|Bye}

Running this would provided the output Bye, using the debug block below:
{debug}
We'll get all the variables at their, "final state"
This will be provided in a dict, which you can further parse and output to your liking.

EG, in YAML format:
something: Hello/World
parsed: Hello/World

This allow's you to see that you forgot to parse with a delimiter which will lead to easy fixing.

Getting Started

Please refer to existing TagScript implementations such as the following Tags cog [https://github.com/phenom4n4n/phen-cogs/blob/master/tags/processor.py] until developer documentation is written.

The Interpreter

Blocks and Adapters

Interpreter Module

Interpreter

	
class bTagScript.interpreter.Interpreter(blocks: Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][Block], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Block]])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The TagScript interpreter.

	
blocks

	A list or tuple of blocks to be used for TagScript processing.

	Type

	UnionList[Block]

	
process(message: str [https://docs.python.org/3/library/stdtypes.html#str], seed_variables: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Adapter]] = None, *, charlimit: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, **kwargs) → Response

	Processes a given TagScript string.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – A TagScript string to be processed.

	seed_variables (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Adapter]) – A dictionary containing strings to adapters to provide context variables for processing.

	charlimit (int [https://docs.python.org/3/library/functions.html#int]) – The maximum characters to process.

	kwargs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Additional keyword arguments that may be used by blocks during processing.

	Returns

	A response object containing the processed body, actions and variables.

	Return type

	Response

	Raises

	
	TagScriptError – A block intentionally raised an exception, most likely due to invalid user input.

	WorkloadExceededError – Signifies the interpreter reached the character limit, if one was provided.

	ProcessError – An unexpected error occurred while processing blocks.

AsyncInterpreter

	
class bTagScript.interpreter.AsyncInterpreter(blocks: Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][Block], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Block]])

	Bases: Interpreter

An asynchronous subclass of Interpreter that allows blocks to implement asynchronous methods.
Synchronous blocks are still supported.
This subclass has no additional attributes from the Interpreter class.
See Interpreter for full documentation.

	
async process(message: str [https://docs.python.org/3/library/stdtypes.html#str], seed_variables: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Adapter]] = None, *, charlimit: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, **kwargs) → Response

	Asynchronously process a given TagScript string.
This method has no additional attributes from the Interpreter class.
See Interpreter.process for full documentation.

Context

	
class bTagScript.interpreter.Context(verb: Verb, res: Response, interpreter: Interpreter, og: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object containing data on the TagScript block processed by the interpreter.
This class is passed to adapters and blocks during processing.

	
verb

	The Verb object representing a TagScript block.

	Type

	Verb

	
original_message

	The original message passed to the interpreter.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
interpreter

	The interpreter processing the TagScript.

	Type

	Interpreter

Response

	
class bTagScript.interpreter.Response(*, variables: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Adapter]] = None, extras: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object containing information on a completed TagScript process.

	
body

	The cleaned message with all verbs interpreted.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
actions

	A dictionary that blocks can access and modify to define post-processing actions.

	Type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
variables

	A dictionary of variables that blocks such as the LooseVariableGetterBlock can access.

	Type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Adapter]

	
extras

	A dictionary of extra keyword arguments that blocks can use to define their own behavior.

	Type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

Node

	
class bTagScript.interpreter.Node(coordinates: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], verb: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Verb] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A low-level object representing a bracketed block.

	
coordinates

	The start and end position of the bracketed text block.

	Type

	Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	
verb

	The determined Verb for this node.

	Type

	Optional[Verb]

	
output

	The Block processed output for this node.

build_node_tree

	
bTagScript.interpreter.build_node_tree(message: str [https://docs.python.org/3/library/stdtypes.html#str]) → List [https://docs.python.org/3/library/typing.html#typing.List][Node]

	Function that finds all possible nodes in a string.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to find nodes in.

	Returns

	A list of all possible text bracket blocks.

	Return type

	List[Node]

Interface

	
class bTagScript.interface.Adapter

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for TagScript adapters.

Implementations must subclass this to create adapters.

	
get_value(ctx: Context) → Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Processes the adapter’s actions for a given Context.

Subclasses must implement this.

	Parameters

	ctx (Context) – The context object containing the TagScript Verb.

	Returns

	The adapters’s processed value.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – The subclass did not implement this required method.

	
class bTagScript.interface.Block

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for TagScript blocks.

Implementations must subclass this to create new blocks.

	
ACCEPTED_NAMES

	The accepted names for this block. This ideally should be set as a class attribute.

	Type

	Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], …]

	
classmethod will_accept(ctx: Context) → bool [https://docs.python.org/3/library/functions.html#bool]

	Describes whether the block is valid for the given Context.

	Parameters

	ctx (Context) – The context object containing the TagScript Verb.

	Returns

	Whether the block should be processed for this Context.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
pre_process(ctx: Context) → Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Any pre processing that needs to be done before the block is processed.

	
process(ctx: Context) → Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Processes the block’s actions for a given Context.

Subclasses must implement this.

	Parameters

	ctx (Context) – The context object containing the TagScript Verb.

	Returns

	The block’s processed value.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – The subclass did not implement this required method.

	
post_process(ctx: Context) → Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Any post processing that needs to be done after the block is processed.

	
bTagScript.interface.verb_required_block(implicit: bool [https://docs.python.org/3/library/functions.html#bool], *, parameter: bool [https://docs.python.org/3/library/functions.html#bool] = False, payload: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Block

	Get a Block subclass that requires a verb to implicitly or explicitly have a parameter or payload passed.

	Parameters

	
	implicit (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether the value is required to be passed implicitly or explicitly.
{block()} would be allowed if implicit is False.

	parameter (bool [https://docs.python.org/3/library/functions.html#bool]) – Passing True will cause the block to require a parameter to be passed.

	payload (bool [https://docs.python.org/3/library/functions.html#bool]) – Passing True will cause the block to require the payload to be passed.

Verb

	
class bTagScript.verb.Verb(verb_string: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, *, limit: int [https://docs.python.org/3/library/functions.html#int] = 2000)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents the passed TagScript block.

	Parameters

	
	verb_string (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The string to parse into a verb.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of characters to parse.

	
declaration

	The text used to declare the block.

	Type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
parameter

	The text passed to the block parameter in the parentheses.

	Type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
payload

	The text passed to the block payload after the colon.

	Type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

Example

Below is a visual representation of a block and its attributes:

.. tagscript::

Normally
{declaration(parameter):payload}

	
set_payload() → None [https://docs.python.org/3/library/constants.html#None]

	Set the payload

	
open_parameter(i: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Open the parameter

	
close_parameter(i: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Close the parameter

Block Module

	
class bTagScript.block.BreakBlock

	Bases: Block

The break block will force the tag output to only be the payload of this block, if the passed
expresssion evaluates true.
If no message is provided to the payload, the tag output will be empty.

This differs from the StopBlock as the stop block stops all tagscript processing and returns
its message while the break block continues to process blocks. If command blocks exist after
the break block, they will still execute.

Usage: {break(<expression>):[message]}

Aliases: short, shortcircuit

Payload: message

Parameter: expression

Examples:

{break(=={args}):You did not provide any input.}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the block and break the tag.

	
class bTagScript.block.CommentBlock

	Bases: Block

The comment block is literally just for comments, it will not be
parsed, however it will be removed from your codes output.

Usage: {comment([other]):[text]}

Aliases: /, Comment, comment, //

Payload: text

Parameter: other

{//:Comment!}

{Comment(Something):Comment!}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Remove the block

	
class bTagScript.block.AllBlock

	Bases: VerbRequiredBlock

The all block checks that all of the passed expressions are true.
Multiple expressions can be passed to the parameter by splitting them with |.

The payload is a required message that must be split by |.
If the expression evaluates true, then the message before the | is returned, else the message after is returned.

Usage: {all(<expression|expression|...>):<message>}

Aliases: and

Payload: message

Parameter: expression

Examples:

{all({args}>=100|{args}<=1000):You picked {args}.|You must provide a number between 100 and 1000.}
if {args} is 52
You must provide a number between 100 and 1000.

if {args} is 282
You picked 282.

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process all the expressions

	
class bTagScript.block.AnyBlock

	Bases: VerbRequiredBlock

The any block checks that any of the passed expressions are true.
Multiple expressions can be passed to the parameter by splitting them with |.

The payload is a required message that must be split by |.
If the expression evaluates true, then the message before the | is returned, else the message after is returned.

Usage: {any(<expression|expression|...>):<message>}

Aliases: or

Payload: message

Parameter: expression

Examples:

{any(hi=={args}|hello=={args}|heyy=={args}):Hello {user}!|How rude.}
If {args} is hi
Hello _Leg3ndary#0001!

If {args} is what's up!
How rude.

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the any block

	
class bTagScript.block.IfBlock

	Bases: VerbRequiredBlock

The if block returns a message based on the passed expression to the parameter.
An expression is represented by two values compared with an operator.

The payload is a required message that must be split by |.
If the expression evaluates true, then the message before the | is returned, else the message after is returned.

Expression Operators:

	Operator

	Check

	Example

	Description

	==

	equality

	a==a

	value 1 is equal to value 2

	!=

	inequality

	a!=b

	value 1 is not equal to value 2

	>

	greater than

	5>3

	value 1 is greater than value 2

	<

	less than

	4<8

	value 1 is less than value 2

	>=

	greater than or equality

	10>=10

	value 1 is greater than or equal to value 2

	<=

	less than or equality

	5<=6

	value 1 is less than or equal to value 2

Usage: {if(<expression>):<message>]}

Payload: message

Parameter: expression

Examples:

{if(63=={args}):You guessed it! The number I was thinking of was 63!|Too {if({args}<63):low|high}, try again.}
If args is 63
You guessed it! The number I was thinking of was 63!

If args is 73
Too low, try again.

If args is 14
Too high, try again.

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the if block

	
class bTagScript.block.CountBlock

	Bases: VerbRequiredBlock

The count block will count how much of text is in message.
This is case sensitive and will include substrings, if you
don’t provide a parameter, it will count the spaces in the
message.

Usage: {count([text]):<message>}

Aliases: None

Payload: message

Parameter: text

{count(Tag):TagScript}
1

{count(Tag):Tag Script TagScript}
2

{count(t):Hello World, Tag, Script}
1 as there's only one lowercase t in the entire string

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Check the count of a string

	
class bTagScript.block.LengthBlock

	Bases: VerbRequiredBlock

The length block will check the length of the given String.
If a parameter is passed in, the block will check the length
based on what you passed in, w for word, s for spaces.
If you provide an invalid parameter, the block will return -1.

Usage: {length(["w", "s"]):<text>}

Aliases: len

Payload: text

Parameter: "w", "s"

{length:TagScript}
9

{len(w):Tag Script}
2

{len(s):Hello World, Tag, Script}
3

{len(space):Hello World, Tag, Script}
-1

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Check the length of a string

	
class bTagScript.block.BlacklistBlock

	Bases: VerbRequiredBlock

The blacklist block will attempt to convert the given parameter into a channel
or role, using name or ID. If the user running the tag is in the targeted
channel or has the targeted role, the tag will stop processing and
it will send the response if one is given. Multiple role or channel
requirements can be given, and should be split by a “,”.

Usage: {blacklist(<role,channel>):[response]}

Payload: response

Parameter: role, channel

Examples:

{blacklist(Muted)}
{blacklist(#support):This tag is not allowed in #support.}
{blacklist(Tag Blacklist, 668713062186090506):You are blacklisted from using tags.}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the blacklists

	
class bTagScript.block.CommandBlock(limit: int [https://docs.python.org/3/library/functions.html#int] = 3)

	Bases: VerbRequiredBlock

Run a command as if the tag invoker had ran it. Only 3 command
blocks can be used in a tag.

Usage: {command:<command>}

Aliases: c, com, command

Payload: command

Parameter: None

Examples:

{c:ping}
Invokes ping command

{c:ban {target(id)} Chatflood/spam}
Invokes ban command on the pinged user with the reason as "Chatflood/spam"

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the block and update response.actions

	
class bTagScript.block.CooldownBlock

	Bases: VerbRequiredBlock

The cooldown block implements cooldowns when running a tag.
The parameter requires 2 values to be passed: rate and per integers.
The rate is the number of times the tag can be used every per seconds.

The payload requires a key value, which is the key used to store the cooldown.
A key should be any string that is unique. If a channel’s ID is passed as a key,
the tag’s cooldown will be enforced on that channel. Running the tag in a separate channel
would have a different cooldown with the same rate and per values.

The payload also has an optional message value, which is the message to be sent when the
cooldown is exceeded. If no message is passed, the default message will be sent instead.
The cooldown message supports 2 blocks: key and retry_after.

Usage: {cooldown(<rate>|<per>):<key>|[message]}

Payload: key, message

Parameter: rate, per

Examples:

{cooldown(1|10):{author(id)}}
the tag author used the tag more than once in 10 seconds
The bucket for 741074175875088424 has reached its cooldown. Retry in 3.25 seconds."

{cooldown(3|3):{channel(id)}|Slow down! This tag can only be used 3 times per 3 seconds per channel. Try again in **{retry_after}** seconds."}
the tag was used more than 3 times in 3 seconds in a channel
Slow down! This tag can only be used 3 times per 3 seconds per channel. Try again in **0.74** seconds.

	
classmethod create_cooldown(key: Any [https://docs.python.org/3/library/typing.html#typing.Any], rate: int [https://docs.python.org/3/library/functions.html#int], per: int [https://docs.python.org/3/library/functions.html#int]) → CooldownMapping

	Create a new cooldown for the given key.

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the cooldown block.

	
class bTagScript.block.DeleteBlock

	Bases: Block

The delete block will delete the message if the condition provided in
the parameter is met, or if just the block is added, the message will
be deleted. Only one delete block will be processed, the rest,
removed, but ignored.

Note

This block will only set the actions “delete” key to True/False.
You must set the behaviour manually.

Usage: {delete(<expression>)}

Aliases: del

Payload: None

Parameter: expression

{delete}
{del(true==true)}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the delete

	
class bTagScript.block.EmbedBlock

	Bases: Block

An embed block will send an embed in the tag response.
There are two ways to use the embed block, either by using properly
formatted embed JSON from an embed generator or manually inputting
the accepted embed attributes.

JSON

Using JSON to create an embed offers complete embed customization.
Multiple embed generators are available online to visualize and generate
embed JSON.

Usage: {embed(<json>)}

Payload: None

Parameter: json

{embed({"title":"Hello!", "description":"This is a test embed."})}
{embed({
 "title":"Here's a random duck!",
 "image":{"url":"https://random-d.uk/api/randomimg"},
 "color":15194415
})}

Manual

The following embed attributes can be set manually:

	title

	description

	color

	url

	thumbnail

	image

	field - (See below)

Adding a field to an embed requires the payload to be split by |, into
either 2 or 3 parts. The first part is the name of the field, the second is
the text of the field, and the third optionally specifies whether the field
should be inline.

Usage: {embed(<attribute>):<value>}

Payload: value

Parameter: attribute

{embed(color):#37b2cb}
{embed(title):Rules}
{embed(description):Follow these rules to ensure a good experience in our server!}
{embed(field):Rule 1|Respect everyone you speak to.|false}

Both methods can be combined to create an embed in a tag.
The following tagscript uses JSON to create an embed with fields and later
set the embed title.

:: tagscript:

{embed({{"fields":[{"name":"Field 1","value":"field description","inline":false}]})}
{embed(title):my embed title}

	
static get_embed(ctx: Context) → Embed

	Gets the embed object

	
static value_to_color(value: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]]) → Colour

	Converts a value to a discord.Colour object

	
text_to_embed(text: str [https://docs.python.org/3/library/stdtypes.html#str]) → Embed

	Converts json to an embed

	
classmethod update_embed(embed: Embed, attribute: str [https://docs.python.org/3/library/stdtypes.html#str], value: str [https://docs.python.org/3/library/stdtypes.html#str]) → Embed

	Update the embed with all attributes

	
static return_error(error: Exception [https://docs.python.org/3/library/exceptions.html#Exception]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return an error message

	
static return_embed(ctx: Context, embed: Embed) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the embed

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the block

	
class bTagScript.block.OverrideBlock

	Bases: Block

Override a command’s permission requirements. This can override
mod, admin, or general user permission requirements when running commands
with the Command Block. Passing no parameter will default to overriding
all permissions.

In order to add a tag with the override block, the tag author must have Manage
Server permissions.

This will not override bot owner commands or command checks.

Usage: {override(["admin"|"mod"|"permissions"]):[command]}

Aliases: bypass

Payload: command

Parameter: "admin", "mod", "permissions"

Examples:

{override}
overrides all commands and permissions

{override(admin)}
overrides commands that require the admin role

{bypass(permissions)}
{bypass(mod)}
overrides commands that require the mod role or have user permission requirements

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the block and update response.actions with correct overrides

	
class bTagScript.block.ReactBlock(limit: int [https://docs.python.org/3/library/functions.html#int] = 5)

	Bases: VerbRequiredBlock

The react block will set the actions “react” key to a list of reactions.

Note

You must set the behaviour manually.

Usage: {react:<emojis>}

Aliases: None

Payload: emojis

Parameter: None

{react:💩}
{react:💩,:)}
{react:💩~:)~:D}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the reactions

	
class bTagScript.block.RedirectBlock

	Bases: VerbRequiredBlock

Redirects the tag response to either the given channel, the author’s DMs,
or uses a reply based on what is passed to the parameter.

Usage: {redirect(<"dm"|"reply"|channel>)}

Payload: None

Parameter: "dm", "reply", "channel"

Examples:

{redirect(dm)}
{redirect(reply)}
{redirect(#general)}
{redirect(626861902521434160)}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the redirect block and params

	
class bTagScript.block.RequireBlock

	Bases: VerbRequiredBlock

The require block will attempt to convert the given parameter into a channel
role or member, using name or ID. If the user running the tag is not in the
targeted channel or doesn’t have the targeted role, the tag will stop processing
and it will send the response if one is given. Multiple role or channel
requirements can be given, and should be split by a “,”.

Usage: {require(<role, channel, member>):[response]}

Aliases: whitelist

Payload: response

Parameter: role, channel, member

Examples:

{require(Moderator)}
{require(#general, #bot-cmds):This tag can only be run in #general and #bot-cmds.}
{require(757425366209134764, 668713062186090506, 737961895356792882):You aren't allowed to use this tag.}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the requirements

	
class bTagScript.block.MathBlock

	Bases: Block

A math block is a block that contains a math expression.
Will write out everything later bleh

Usage: {math:<expression>}

Aliases: math, m, +, calc

Payload: expression

Parameter: None

Examples:

{m:2+3}
5.0

{math:7(2+3)}
42.0

{math:trunc(7(2+3))}
42

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Try and process the block into a float

	
class bTagScript.block.OrdinalAbbreviationBlock

	Bases: Block

The ordinalabbreviation block returns the ordinal abbreviation of a number.
If a parameter is provided, it must be, one of, c, comma, indicator, i
Comma being adding commas every 3 digits, indicator, meaning the ordinal indicator.
(The st of 1st, nd of 2nd, etc.)

The number may be positive or negative, if the payload is invalid, -1 is returned.

Usage: {ord(["c", "comma", "i", "indicator"]):<number>}

Aliases: None

Payload: number

Parameter: "c", "comma", "i", "indicator"

{ord:1000}
1,000th

{ord(c):1213123}
1,213,123

{ord(i):2022}
2022nd

	
process(ctx: Context) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Process the ordinal abbreviation block

	
class bTagScript.block.RandomBlock

	Bases: VerbRequiredBlock

Pick a random item from a list of strings, split by either ~
or ,. An optional seed can be provided to the parameter to
always choose the same item when using that seed.
You can weight options differently by adding a weight and | before
the item.

Usage: {random([seed]):<list>}

Aliases: #, rand

Payload: list

Parameter: seed

Examples:

{random:Carl,Harold,Josh} attempts to pick the lock!
Possible Outputs:
Josh attempts to pick the lock!
Carl attempts to pick the lock!
Harold attempts to pick the lock!

{=(insults):You're so ugly that you went to the salon and it took 3 hours just to get an estimate.~I'll never forget the first time we met, although I'll keep trying.~You look like a before picture.}
{=(insult):{#:{insults}}}
{insult}
Assigns a random insult to the insult variable

{#:5|Cool,3|Lame}
5 to 3 chances of being cool vs lame

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the randomness woo

	
class bTagScript.block.RangeBlock

	Bases: VerbRequiredBlock

The range block picks a random number from a range of numbers seperated by -.
The number range is inclusive, so it can pick the starting/ending number as well.
Using the rangef block will pick a number to the tenth decimal place.

An optional seed can be provided to the parameter to always choose the same item when using that seed.

Usage: {range([seed]):<lowest-highest>}

Aliases: rangef

Payload: number

Parameter: seed

Examples:

Your lucky number is {range:10-30}!
Your lucky number is 14!
Your lucky number is 25!

{=(height):{rangef:5-7}}
I am guessing your height is {height}ft.
I am guessing your height is 5.3ft.

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the range block

	
class bTagScript.block.PythonBlock

	Bases: VerbRequiredBlock

The in block serves three different purposes depending on the alias that is used.

The in alias checks if the parameter is anywhere in the payload.

contain strictly checks if the parameter is the payload, split by whitespace.

index finds the location of the parameter in the payload, split by whitespace.
If the parameter string is not found in the payload, it returns 1.

index is used to return the value of the string form the given list of

Usage: {in(<string>):<payload>}

Aliases: index, contains

Payload: payload

Parameter: string

Examples:

{in(apple pie):banana pie apple pie and other pie}
true
{in(mute):How does it feel to be muted?}
true
{in(a):How does it feel to be muted?}
false

{contains(mute):How does it feel to be muted?}
false
{contains(muted?):How does it feel to be muted?}
false

{index(food):I love to eat food. everyone does.}
4
{index(pie):I love to eat food. everyone does.}
-1

	
will_accept(ctx: Context) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if we can accept

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the block

	
class bTagScript.block.ReplaceBlock

	Bases: VerbRequiredBlock

The replace block will replace specific characters in a string.
The parameter should split by a ,, containing the characters to find
before the command and the replacements after.

Usage: {replace(<original,new>):<message>}

Aliases: sub

Payload: message

Parameter: original, new

{replace(o,i):welcome to the server}
welcime ti the server

{replace(1,6):{args}}
if {args} is 1637812
6637862

{replace(,):Test}
T e s t

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Replace the characters in the payload

	
class bTagScript.block.StopBlock

	Bases: VerbRequiredBlock

The stop block stops tag processing if the given parameter is true.
If a message is passed to the payload it will return that message.

Usage: {stop(<bool>):[string]}

Aliases: halt, error

Payload: string

Parameter: bool

Example:

{stop(=={args}):You must provide arguments for this tag.}
enforces providing arguments for a tag

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the stop block

	
class bTagScript.block.StrfBlock

	Bases: Block

The strf block converts and formats timestamps based on strftime formatting spec [https://strftime.org/].
Two types of timestamps are supported: ISO and epoch.
If a timestamp isn’t passed, the current UTC time is used.

Invoking this block with Unix Specific Services [https://docs.python.org/3/library/unix.html#unix] will return the current Unix timestamp.

Usage: {strf([timestamp]):<format>}

Aliases: unix

Payload: format

Parameter: timestamp

Example:

{strf:%Y-%m-%d}
2021-07-11

{strf({user(timestamp)}):%c}
Fri Jun 29 21:10:28 2018

{strf(1420070400):%A %d, %B %Y}
Thursday 01, January 2015

{strf(2019-10-09T01:45:00.805000):%H:%M %d-%B-%Y}
01:45 09-October-2019

{unix}
1629182008

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the strf block

	
class bTagScript.block.URLDecodeBlock

	Bases: VerbRequiredBlock

This block will decode a given url into a string
with non-url compliant characters replaced. Using + as the parameter
will replace spaces with + rather than %20.

Usage: {urldecode(["+"]):<string>}

Payload: string

Parameter: “+”, None

Examples:

{urldecode:covid-19%20sucks}
covid-19 sucks

{urldecode(+):im+stuck+at+home+writing+docs}
im stuck at home writing docs

This block is just the reverse of the urlencode block

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the block

	
class bTagScript.block.URLEncodeBlock

	Bases: VerbRequiredBlock

This block will encode a given string into a properly formatted url
with non-url compliant characters replaced. Using + as the parameter
will replace spaces with + rather than %20.

Usage: {urlencode(["+"]):<string>}

Payload: string

Parameter: “+”, None

Example:

{urlencode:covid-19 sucks}
covid-19%20sucks

{urlencode(+):im stuck at home writing docs}
im+stuck+at+home+writing+docs

You can use this to search up blocks
Eg if {args} is command block

<https://btagscript.readthedocs.io/en/latest/search.html?q={urlencode(+):{args}}&check_keywords=yes&area=default>
<https://btagscript.readthedocs.io/en/latest/search.html?q=command+block&check_keywords=yes&area=default>

	
process(ctx: Context) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Processes the block’s actions for a given Context.

Subclasses must implement this.

	Parameters

	ctx (Context) – The context object containing the TagScript Verb.

	Returns

	The block’s processed value.

	Return type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – The subclass did not implement this required method.

	
class bTagScript.block.DebugBlock

	Bases: Block

The debug block allows you to debug your tagscript quickly and easily,
it will save the output to the debug_var key in the response dict.
Separate the variables you want to include or exclude with a comma or
a tilde.

If no parameters are provided in addition to no payload, all variables
will be included. If no parameters are provided and a payload is
provided, it will assume you want to include those variables.

Usage: {debug(["i", "include", "e", "exclude"]):<variables>}

Aliases: None

Payload: variables

Parameter: "i", "include", "e", "exclude"

Note

{debug} is the same as {debug(exclude):}

{debug:somevar~anothervar} is the same as {debug(include):somevar~anothervar}

Examples:

Note

THIS SHOULD ALWAYS BE PLACED AT THE VERY BOTTOM, IT WILL NOT RETURN ANYTHING UNDER IT.

Assuming we have the following tagscript, we first set the var something, then set
parsed (using the dollar sign method), to Hello|World, (assume we actually wanted just the Hello
but we forgot)

{=(something):Hello/World}
{$parsed:{something(1)}}
{if({parsed}==Hello):Hello|Bye}

Running this would provided the output Bye, using the debug block below:
{debug}
We'll get all the variables at their, "final state"
This will be provided in a dict, which you can further parse and output to your liking.

EG, in YAML format:
something: Hello/World
parsed: Hello/World

This allow's you to see that you forgot to parse with a delimiter which will lead to easy fixing.

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Debug the tagscript!

	
class bTagScript.block.VarBlock

	Bases: VerbRequiredBlock

Variables are useful for choosing a value and referencing it later in a tag.
Variables can be referenced using brackets as any other block.
Note that if the variable’s name is being “used” by any other block the variable
will be ignored.

Usage: {=(<name>):<value>}

Aliases: let, var, =

Payload: value

Parameter: name

Examples:

{=(prefix):!}
The prefix here is `{prefix}`.
The prefix here is `!`.

{let(day):Monday}
{if({day}==Wednesday):It's Wednesday my dudes!|The day is {day}.}
The day is Monday.

Variables can also be created like so
{$<name>:<value>}
{$day:Monday} == {=(day):Monday}

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the block and assign the variable.

	
class bTagScript.block.LooseVariableGetterBlock

	Bases: Block

The loose variable block represents the adapters for any seeded or defined variables.
This variable implementation is considered “loose” since it checks whether the variable is
valid during process(), rather than will_accept().
You may also define variables here with {$<variable name>:<value>}

Usage: {<variable_name>([parameter]):[payload]}

Aliases: This block is valid for any inputted declaration.

Payload: Depends on the variable’s underlying adapter.

Parameter: Depends on the variable’s underlying adapter.

Examples:

{=(example):This is my variable.}
{example}
This is my variable.

{$variablename:This is another variable.}
{variablename}
This is another variable.

	
will_accept(ctx: Context) → bool [https://docs.python.org/3/library/functions.html#bool]

	This block will accept any declaration.

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	This block will check whether the variable is valid.

	
class bTagScript.block.StrictVariableGetterBlock

	Bases: Block

The strict variable block represents the adapters for any seeded or defined variables.
This variable implementation is considered “strict” since it checks whether the variable is
valid during will_accept() and is only processed if the declaration refers to a valid
variable.

Usage: {<variable_name>([parameter]):[payload]}

Aliases: This block is valid for any variable name in Response.variables.

Payload: Depends on the variable’s underlying adapter.

Parameter: Depends on the variable’s underlying adapter.

Examples:

{=(example):This is my variable.}
{example}
This is my variable.

	
will_accept(ctx: Context) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the declaration is in the response variables

	
process(ctx: Context) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Process the strict variable block

Adapter Module

	
class bTagScript.adapter.SafeObjectAdapter(base)

	Bases: Adapter

For objects

	
get_value(ctx: Verb) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the value safely

	
class bTagScript.adapter.StringAdapter(string: str [https://docs.python.org/3/library/stdtypes.html#str], *, escape: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: Adapter

String adapter, allows blocks to be parsed, used basically only for variables

	
get_value(ctx: Verb) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the value given the verb

	
handle_ctx(ctx: Verb) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Transform any parsing data the block may have

	
return_value(string: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the value, escaped

	
class bTagScript.adapter.IntAdapter(integer: int [https://docs.python.org/3/library/functions.html#int])

	Bases: Adapter

IntAdapter, so far no use for this?

	
get_value(ctx: Verb) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the value of the int into string, not sure why this even exists

	
class bTagScript.adapter.FunctionAdapter(function_pointer: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], str [https://docs.python.org/3/library/stdtypes.html#str]])

	Bases: Adapter

Function adapter…

Would be cool to have functions in tagscript

	
get_value(ctx: Verb) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Run the function and get the value

	
class bTagScript.adapter.AttributeAdapter(base: Union [https://docs.python.org/3/library/typing.html#typing.Union][TextChannel, Member, Guild])

	Bases: Adapter

Base attribute adapter for discord.py objects

	
update_attributes() → None [https://docs.python.org/3/library/constants.html#None]

	Update attributes for the block

	
update_methods() → None [https://docs.python.org/3/library/constants.html#None]

	Update methods for the block

	
get_value(ctx: Verb) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the value for the adapter

	
class bTagScript.adapter.MemberAdapter(base: Union [https://docs.python.org/3/library/typing.html#typing.Union][TextChannel, Member, Guild])

	Bases: AttributeAdapter

The {author} block with no parameters returns the tag invoker’s full username
and discriminator, but passing the attributes listed below to the block payload
will return that attribute instead.

Aliases: user

Usage: {author([attribute])

Payload: None

Parameter: attribute, None

	
id

	The author’s Discord ID.

	
name

	The author’s username.

	
nick

	The author’s nickname, if they have one, else their username.

	
avatar

	A link to the author’s avatar, which can be used in embeds.

	
discriminator

	The author’s discriminator.

	
created_at

	The author’s account creation date.

	
timestamp

	The author’s account creation date as a UTC timestamp.

	
joined_at

	The date the author joined the server.

	
mention

	A formatted text that pings the author.

	
bot

	Whether or not the author is a bot.

	
color

	The author’s top role’s color as a hex code.

	
top_role

	The author’s top role.

	
boost

	If the user boosted, this will be the the UTC timestamp of when they did, if not, this will be empty.

	
timed_out

	If the user is timed out, this will be the the UTC timestamp of when they’ll be “untimed-out”, if not timed out, this will be empty.

	
banner

	The users banner url

	
roleids

	A list of the author’s role IDs, split by spaces.

	
update_attributes() → None [https://docs.python.org/3/library/constants.html#None]

	Update the adapter with all it’s needed attributes

	
class bTagScript.adapter.ChannelAdapter(base: Union [https://docs.python.org/3/library/typing.html#typing.Union][TextChannel, Member, Guild])

	Bases: AttributeAdapter

The {channel} block with no parameters returns the channel’s full name
but passing the attributes listed below to the block payload
will return that attribute instead.

Usage: {channel([attribute])

Payload: None

Parameter: attribute, None

	
id

	The channel’s ID.

	
name

	The channel’s name.

	
created_at

	The channel’s creation date.

	
timestamp

	The channel’s creation date as a UTC timestamp.

	
nsfw

	Whether the channel is nsfw.

	
mention

	A formatted text that pings the channel.

	
topic

	The channel’s topic.

	
slowmode

	The channel’s slowmode in seconds, 0 if disabled

	
update_attributes() → None [https://docs.python.org/3/library/constants.html#None]

	Update block attributes

	
class bTagScript.adapter.GuildAdapter(base: Union [https://docs.python.org/3/library/typing.html#typing.Union][TextChannel, Member, Guild])

	Bases: AttributeAdapter

The {server} block with no parameters returns the server’s name
but passing the attributes listed below to the block payload
will return that attribute instead.

Aliases: guild

Usage: {server([attribute])

Payload: None

Parameter: attribute, None

	
id

	The server’s ID.

	
name

	The server’s name.

	
icon

	A link to the server’s icon, which can be used in embeds.

	
created_at

	The server’s creation date.

	
timestamp

	The server’s creation date as a UTC timestamp.

	
member_count

	The server’s member count.

	
bots

	The number of bots in the server.

	
humans

	The number of humans in the server.

	
description

	The server’s description if one is set, or “No description”.

	
random

	A random member from the server.

	
update_attributes() → None [https://docs.python.org/3/library/constants.html#None]

	Update block attributes

	
update_methods() → None [https://docs.python.org/3/library/constants.html#None]

	Update methods for the block

	
random_member() → None [https://docs.python.org/3/library/constants.html#None]

	Return a random member

Exceptions

	
exception bTagScript.exceptions.TagScriptError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for all module errors.

	
exception bTagScript.exceptions.WorkloadExceededError

	Bases: TagScriptError

Raised when the interpreter goes over its passed character limit.

	
exception bTagScript.exceptions.ProcessError(error: Exception [https://docs.python.org/3/library/exceptions.html#Exception], response: Response, interpreter: Interpreter)

	Bases: TagScriptError

Raised when an exception occurs during interpreter processing.

	
original

	The original exception that occurred during processing.

	Type

	Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
response

	The incomplete response that was being processed when the exception occurred.

	Type

	Response

	
interpreter

	The interpreter used for processing.

	Type

	Interpreter

	
exception bTagScript.exceptions.EmbedParseError

	Bases: TagScriptError

Raised if an exception occurs while attempting to parse an embed.

	
exception bTagScript.exceptions.BadColourArgument(argument: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: EmbedParseError

Raised when the passed input fails to convert to discord.Colour [https://discordpy.readthedocs.io/en/stable/api.html#discord.Colour].

	
argument

	The invalid input.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exception bTagScript.exceptions.StopError(message: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: TagScriptError

Raised by the StopBlock to stop processing.

	
message

	The stop error message.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exception bTagScript.exceptions.CooldownExceeded(message: str [https://docs.python.org/3/library/stdtypes.html#str], cooldown: Cooldown, key: str [https://docs.python.org/3/library/stdtypes.html#str], retry_after: float [https://docs.python.org/3/library/functions.html#float])

	Bases: StopError

Raised by the cooldown block when a cooldown is exceeded.

	
message

	The cooldown error message.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cooldown

	The cooldown bucket with information on the cooldown.

	Type

	discord.ext.commands.Cooldown

	
key

	The cooldown key that reached its cooldown.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
retry_after

	The seconds left til the cooldown ends.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
exception bTagScript.exceptions.BlocknameDuplicateError(blockname: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: TagScriptError

Raised when a block’s name is duplicated when passed to the interpreter

	
blockname

	The blockname that was duplicated

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bTagScript	

 	
 	
 bTagScript.adapter	

 	
 	
 bTagScript.exceptions	

 	
 	
 bTagScript.interface	

 	
 	
 bTagScript.utils	

 	
 	
 bTagScript.verb	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	ACCEPTED_NAMES (bTagScript.interface.Block attribute)

 	actions (bTagScript.interpreter.Response attribute)

 	Adapter (class in bTagScript.interface)

 	AllBlock (class in bTagScript.block)

 	
 	AnyBlock (class in bTagScript.block)

 	argument (bTagScript.exceptions.BadColourArgument attribute)

 	AsyncInterpreter (class in bTagScript.interpreter)

 	AttributeAdapter (class in bTagScript.adapter)

 	avatar (bTagScript.adapter.MemberAdapter attribute)

B

 	
 	BadColourArgument

 	banner (bTagScript.adapter.MemberAdapter attribute)

 	BlacklistBlock (class in bTagScript.block)

 	Block (class in bTagScript.interface)

 	blockname (bTagScript.exceptions.BlocknameDuplicateError attribute)

 	BlocknameDuplicateError

 	blocks (bTagScript.interpreter.Interpreter attribute)

 	body (bTagScript.interpreter.Response attribute)

 	boost (bTagScript.adapter.MemberAdapter attribute)

 	bot (bTagScript.adapter.MemberAdapter attribute)

 	bots (bTagScript.adapter.GuildAdapter attribute)

 	
 	BreakBlock (class in bTagScript.block)

 	
 bTagScript.adapter

 	module

 	
 bTagScript.exceptions

 	module

 	
 bTagScript.interface

 	module

 	
 bTagScript.utils

 	module

 	
 bTagScript.verb

 	module

 	build_node_tree() (in module bTagScript.interpreter)

C

 	
 	ChannelAdapter (class in bTagScript.adapter)

 	close_parameter() (bTagScript.verb.Verb method)

 	color (bTagScript.adapter.MemberAdapter attribute)

 	CommandBlock (class in bTagScript.block)

 	CommentBlock (class in bTagScript.block)

 	Context (class in bTagScript.interpreter)

 	cooldown (bTagScript.exceptions.CooldownExceeded attribute)

 	
 	CooldownBlock (class in bTagScript.block)

 	CooldownExceeded

 	coordinates (bTagScript.interpreter.Node attribute)

 	CountBlock (class in bTagScript.block)

 	created_at (bTagScript.adapter.ChannelAdapter attribute)

 	(bTagScript.adapter.GuildAdapter attribute)

 	(bTagScript.adapter.MemberAdapter attribute)

D

 	
 	DebugBlock (class in bTagScript.block)

 	declaration (bTagScript.verb.Verb attribute)

 	
 	description (bTagScript.adapter.GuildAdapter attribute)

 	discriminator (bTagScript.adapter.MemberAdapter attribute)

E

 	
 	EmbedBlock (class in bTagScript.block)

 	EmbedParseError

 	
 	escape_content() (in module bTagScript.utils)

 	extras (bTagScript.interpreter.Response attribute)

F

 	
 	FunctionAdapter (class in bTagScript.adapter)

G

 	
 	get_value() (bTagScript.adapter.AttributeAdapter method)

 	(bTagScript.adapter.FunctionAdapter method)

 	(bTagScript.adapter.IntAdapter method)

 	(bTagScript.adapter.SafeObjectAdapter method)

 	(bTagScript.adapter.StringAdapter method)

 	(bTagScript.interface.Adapter method)

 	
 	GuildAdapter (class in bTagScript.adapter)

H

 	
 	handle_ctx() (bTagScript.adapter.StringAdapter method)

 	
 	humans (bTagScript.adapter.GuildAdapter attribute)

I

 	
 	icon (bTagScript.adapter.GuildAdapter attribute)

 	id (bTagScript.adapter.ChannelAdapter attribute)

 	(bTagScript.adapter.GuildAdapter attribute)

 	(bTagScript.adapter.MemberAdapter attribute)

 	
 	IfBlock (class in bTagScript.block)

 	IntAdapter (class in bTagScript.adapter)

 	interpreter (bTagScript.exceptions.ProcessError attribute)

 	(bTagScript.interpreter.Context attribute)

 	Interpreter (class in bTagScript.interpreter)

J

 	
 	joined_at (bTagScript.adapter.MemberAdapter attribute)

K

 	
 	key (bTagScript.exceptions.CooldownExceeded attribute)

L

 	
 	LengthBlock (class in bTagScript.block)

 	
 	LooseVariableGetterBlock (class in bTagScript.block)

M

 	
 	MathBlock (class in bTagScript.block)

 	maybe_await() (in module bTagScript.utils)

 	member_count (bTagScript.adapter.GuildAdapter attribute)

 	MemberAdapter (class in bTagScript.adapter)

 	mention (bTagScript.adapter.ChannelAdapter attribute)

 	(bTagScript.adapter.MemberAdapter attribute)

 	message (bTagScript.exceptions.CooldownExceeded attribute)

 	(bTagScript.exceptions.StopError attribute)

 	
 	
 module

 	bTagScript.adapter

 	bTagScript.exceptions

 	bTagScript.interface

 	bTagScript.utils

 	bTagScript.verb

N

 	
 	name (bTagScript.adapter.ChannelAdapter attribute)

 	(bTagScript.adapter.GuildAdapter attribute)

 	(bTagScript.adapter.MemberAdapter attribute)

 	
 	nick (bTagScript.adapter.MemberAdapter attribute)

 	Node (class in bTagScript.interpreter)

 	nsfw (bTagScript.adapter.ChannelAdapter attribute)

O

 	
 	open_parameter() (bTagScript.verb.Verb method)

 	OrdinalAbbreviationBlock (class in bTagScript.block)

 	original (bTagScript.exceptions.ProcessError attribute)

 	
 	original_message (bTagScript.interpreter.Context attribute)

 	output (bTagScript.interpreter.Node attribute)

 	OverrideBlock (class in bTagScript.block)

P

 	
 	parameter (bTagScript.verb.Verb attribute)

 	payload (bTagScript.verb.Verb attribute)

 	post_process() (bTagScript.interface.Block method)

 	pre_process() (bTagScript.interface.Block method)

 	
 	process() (bTagScript.interface.Block method)

 	(bTagScript.interpreter.AsyncInterpreter method)

 	(bTagScript.interpreter.Interpreter method)

 	ProcessError

R

 	
 	random (bTagScript.adapter.GuildAdapter attribute)

 	random_member() (bTagScript.adapter.GuildAdapter method)

 	RandomBlock (class in bTagScript.block)

 	RangeBlock (class in bTagScript.block)

 	RedirectBlock (class in bTagScript.block)

 	ReplaceBlock (class in bTagScript.block)

 	
 	RequireBlock (class in bTagScript.block)

 	response (bTagScript.exceptions.ProcessError attribute)

 	Response (class in bTagScript.interpreter)

 	retry_after (bTagScript.exceptions.CooldownExceeded attribute)

 	return_value() (bTagScript.adapter.StringAdapter method)

 	roleids (bTagScript.adapter.MemberAdapter attribute)

S

 	
 	SafeObjectAdapter (class in bTagScript.adapter)

 	set_payload() (bTagScript.verb.Verb method)

 	slowmode (bTagScript.adapter.ChannelAdapter attribute)

 	
 	StopError

 	StrfBlock (class in bTagScript.block)

 	StrictVariableGetterBlock (class in bTagScript.block)

 	StringAdapter (class in bTagScript.adapter)

T

 	
 	TagScriptError

 	timed_out (bTagScript.adapter.MemberAdapter attribute)

 	timestamp (bTagScript.adapter.ChannelAdapter attribute)

 	(bTagScript.adapter.GuildAdapter attribute)

 	(bTagScript.adapter.MemberAdapter attribute)

 	
 	top_role (bTagScript.adapter.MemberAdapter attribute)

 	topic (bTagScript.adapter.ChannelAdapter attribute)

U

 	
 	update_attributes() (bTagScript.adapter.AttributeAdapter method)

 	(bTagScript.adapter.ChannelAdapter method)

 	(bTagScript.adapter.GuildAdapter method)

 	(bTagScript.adapter.MemberAdapter method)

 	
 	update_methods() (bTagScript.adapter.AttributeAdapter method)

 	(bTagScript.adapter.GuildAdapter method)

 	URLDecodeBlock (class in bTagScript.block)

 	URLEncodeBlock (class in bTagScript.block)

V

 	
 	variables (bTagScript.interpreter.Response attribute)

 	verb (bTagScript.interpreter.Context attribute)

 	(bTagScript.interpreter.Node attribute)

 	
 	Verb (class in bTagScript.verb)

 	verb_required_block() (in module bTagScript.interface)

W

 	
 	will_accept() (bTagScript.interface.Block class method)

 	
 	WorkloadExceededError

Utils

	
bTagScript.utils.escape_content(string: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Escapes given input to avoid tampering with engine/block behavior.

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to escape.

	Returns

	The escaped content.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
async bTagScript.utils.maybe_await(func: Union [https://docs.python.org/3/library/typing.html#typing.Union][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], *args, **kwargs) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Await the given function if it is awaitable or call it synchronously.

	Parameters

	
	func (Union[Callable[..., Any], Awaitable[Any]]) – The function callable to call.

	*args (Any) – The arguments to pass to the function.

	**kwargs (Any) – The keyword arguments to pass to the function.

	Returns

	The result of the awaitable function.

	Return type

	Any

Getting Started

This is a quickstart guide for the bTagScript library.

Installation

Make sure the following dependencies are installed:

git+https://github.com/Rapptz/discord.py
pyparsing>=3.0.9

Credits

Thank you to the following users who contributed to this documentation and tagscript ideas overall!

	PhenoM4n4n phenom4n4n

	sravan sravan#0001

	Anik aniksarker_21

	Leg3ndary Leg3ndary

	Asty Asty'

	asportnoy asportnoy

Also would like to thank the tagscript community as a whole.

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to TagScript’s documentation!

